Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 614(7949): 719-724, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36755095

RESUMEN

The potential of climate change to substantially alter human history is a pressing concern, but the specific effects of different types of climate change remain unknown. This question can be addressed using palaeoclimatic and archaeological data. For instance, a 300-year, low-frequency shift to drier, cooler climate conditions around 1200 BC is frequently associated with the collapse of several ancient civilizations in the Eastern Mediterranean and Near East1-4. However, the precise details of synchronized climate and human-history-scale associations are lacking. The archaeological-historical record contains multiple instances of human societies successfully adapting to low-frequency climate change5-7. It is likely that consecutive multi-year occurrences of rare, unexpected extreme climatic events may push a population beyond adaptation and centuries-old resilience practices5,7-10. Here we examine the collapse of the Hittite Empire around 1200 BC. The Hittites were one of the great powers in the ancient world across five centuries11-14, with an empire centred in a semi-arid region in Anatolia with political and socioeconomic interconnections throughout the ancient Near East and Eastern Mediterranean, which for a long time proved resilient despite facing regular and intersecting sociopolitical, economic and environmental challenges. Examination of ring width and stable isotope records obtained from contemporary juniper trees in central Anatolia provides a high-resolution dryness record. This analysis identifies an unusually severe continuous dry period from around 1198 to 1196 (±3) BC, potentially indicating a tipping point, and signals the type of episode that can overwhelm contemporary risk-buffering practices.


Asunto(s)
Cambio Climático , Sequías , Humanos , Arqueología , Cambio Climático/historia , Cambio Climático/estadística & datos numéricos , Sequías/historia , Sequías/estadística & datos numéricos , Árboles , Historia Antigua , Juniperus , Regiones de la Antigüedad , Turquía
2.
PLoS One ; 16(10): e0258555, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34653214

RESUMEN

The timeframe of Indigenous settlements in Northeast North America in the 15th-17th centuries CE has until very recently been largely described in terms of European material culture and history. An independent chronology was usually absent. Radiocarbon dating has recently begun to change this conventional model radically. The challenge, if an alternative, independent timeframe and history is to be created, is to articulate a high-resolution chronology appropriate and comparable with the lived histories of the Indigenous village settlements of the period. Improving substantially on previous initial work, we report here high-resolution defined chronologies for the three most extensively excavated and iconic ancestral Kanien'kehá꞉ka (Mohawk) village sites in New York (Smith-Pagerie, Klock and Garoga), and a fourth early historic Indigenous site, Brigg's Run, and re-assess the wider chronology of the Mohawk River Valley in the mid-15th to earlier 17th centuries. This new chronology confirms initial suggestions from radiocarbon that a wholesale reappraisal of past assumptions is necessary, since our dates conflict completely with past dates and the previously presumed temporal order of these three iconic sites. In turn, a wider reassessment of northeastern North American early history and re-interpretation of Atlantic connectivities in the later 15th through early 17th centuries is required. Our new closely defined date ranges are achieved employing detailed archival analysis of excavation records to establish the contextual history for radiocarbon-dated samples from each site, tree-ring defined short time series from wood charcoal samples fitted against the radiocarbon calibration curve ('wiggle-matching'), and Bayesian chronological modelling for each of the individual sites integrating all available prior knowledge and radiocarbon dating probabilities. We define (our preferred model) most likely (68.3% highest posterior density) village occupation ranges for Smith-Pagerie of ~1478-1498, Klock of ~1499-1521, Garoga of ~1550-1582, and Brigg's Run of ~1619-1632.


Asunto(s)
Arqueología , Emigración e Inmigración/historia , Teorema de Bayes , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Humanos , América del Norte , Datación Radiométrica , Ríos , Población Blanca , Madera/química
3.
PLoS One ; 15(10): e0240799, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33119717

RESUMEN

There has been considerable focus on the main, expansionary, and inter-regionally linked or 'globalising' periods in Old World pre- and proto-history, with a focus on identifying, analyzing and dating collapse at the close of these pivotal periods. The end of the Early Bronze Age in the late third millennium BCE and a subsequent 'intermediate' or transitional period before the Middle Bronze Age (~2200-1900 BCE), and the end of the Late Bronze Age in the late second millennium BCE and the ensuing period of transformation during the Early Iron Age (~1200-900 BCE), are key examples. Among other issues, climate change is regularly invoked as a cause or factor in both cases. Recent considerations of "collapse" have emphasized the unpredictability and variability of responses during such periods of reorganization and transformation. Yet, a gap in scholarly attention remains in documenting the responses observed at important sites during these 'transformative' periods in the Old World region. Tell Tayinat in southeastern Turkey, as a major archaeological site occupied during these two major 'in between' periods of transformation, offers a unique case for comparing and contrasting differing responses to change. To enable scholarly assessment of associations between the local trajectory of the site and broader regional narratives, an essential preliminary need is a secure, resolved timeframe for the site. Here we report a large set of radiocarbon data and incorporate the stratigraphic sequence using Bayesian chronological modelling to create a refined timeframe for Tell Tayinat and a secure basis for analysis of the site with respect to its broader regional context and climate history.


Asunto(s)
Sequías , Teorema de Bayes , Radioisótopos de Carbono , Geografía , Modelos Teóricos , Datación Radiométrica , Factores de Tiempo , Turquía
4.
Sci Rep ; 10(1): 13785, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807792

RESUMEN

The new IntCal20 radiocarbon record continues decades of successful practice by employing one calibration curve as an approximation for different regions across the hemisphere. Here we investigate three radiocarbon time-series of archaeological and historical importance from the Mediterranean-Anatolian region, which indicate, or may include, offsets from IntCal20 (~0-22 14C years). While modest, these differences are critical for our precise understanding of historical and environmental events across the Mediterranean Basin and Near East. Offsets towards older radiocarbon ages in Mediterranean-Anatolian wood can be explained by a divergence between high-resolution radiocarbon dates from the recent generation of accelerator mass spectrometry (AMS) versus dates from previous technologies, such as low-level gas proportional counting (LLGPC) and liquid scintillation spectrometry (LSS). However, another reason is likely differing growing season lengths and timings, which would affect the seasonal cycle of atmospheric radiocarbon concentrations recorded in different geographic zones. Understanding and correcting these offsets is key to the well-defined calendar placement of a Middle Bronze Age tree-ring chronology. This in turn resolves long-standing debate over Mesopotamian chronology in the earlier second millennium BCE. Last but not least, accurate dating is needed for any further assessment of the societal and environmental impact of the Thera/Santorini volcanic eruption.

5.
Proc Natl Acad Sci U S A ; 115(24): 6141-6146, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29844183

RESUMEN

Considerable work has gone into developing high-precision radiocarbon (14C) chronologies for the southern Levant region during the Late Bronze to Iron Age/early Biblical periods (∼1200-600 BC), but there has been little consideration whether the current standard Northern Hemisphere 14C calibration curve (IntCal13) is appropriate for this region. We measured 14C ages of calendar-dated tree rings from AD 1610 to 1940 from southern Jordan to investigate contemporary 14C levels and to compare these with IntCal13. Our data reveal an average offset of ∼19 14C years, but, more interestingly, this offset seems to vary in importance through time. While relatively small, such an offset has substantial relevance to high-resolution 14C chronologies for the southern Levant, both archaeological and paleoenvironmental. For example, reconsidering two published studies, we find differences, on average, of 60% between the 95.4% probability ranges determined from IntCal13 versus those approximately allowing for the observed offset pattern. Such differences affect, and even potentially undermine, several current archaeological and historical positions and controversies.

6.
PLoS One ; 11(7): e0157144, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27409585

RESUMEN

500 years of ancient Near Eastern history from the earlier second millennium BCE, including such pivotal figures as Hammurabi of Babylon, Samsi-Adad I (who conquered Assur) and Zimrilim of Mari, has long floated in calendar time subject to rival chronological schemes up to 150+ years apart. Texts preserved on clay tablets provide much information, including some astronomical references, but despite 100+ years of scholarly effort, chronological resolution has proved impossible. Documents linked with specific Assyrian officials and rulers have been found and associated with archaeological wood samples at Kültepe and Acemhöyük in Turkey, and offer the potential to resolve this long-running problem. Here we show that previous work using tree-ring dating to place these timbers in absolute time has fundamental problems with key dendrochronological crossdates due to small sample numbers in overlapping years and insufficient critical assessment. To address, we have integrated secure dendrochronological sequences directly with radiocarbon (14C) measurements to achieve tightly resolved absolute (calendar) chronological associations and identify the secure links of this tree-ring chronology with the archaeological-historical evidence. The revised tree-ring-sequenced 14C time-series for Kültepe and Acemhöyük is compatible only with the so-called Middle Chronology and not with the rival High, Low or New Chronologies. This finding provides a robust resolution to a century of uncertainty in Mesopotamian chronology and scholarship, and a secure basis for construction of a coherent timeframe and history across the Near East and East Mediterranean in the earlier second millennium BCE. Our re-dating also affects an unusual tree-ring growth anomaly in wood from Porsuk, Turkey, previously tentatively associated with the Minoan eruption of the Santorini volcano. This tree-ring growth anomaly is now directly dated ~1681-1673 BCE (68.2% highest posterior density range), ~20 years earlier than previous assessments, indicating that it likely has no association with the subsequent Santorini volcanic eruption.


Asunto(s)
Radioisótopos de Carbono/análisis , Árboles/química , Historia Antigua , Medio Oriente , Factores de Tiempo , Árboles/crecimiento & desarrollo , Turquía , Erupciones Volcánicas/historia , Madera/química , Madera/historia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...